
Solution for Problem 1:

We have two coupled differential equations. They can be solved using Euler’s method. First,
we set the drag constant k to zero to check the accuracy of the numerical solution. For k=0, the

differential equations become 
dv
dt

dv
dt

gx y= = −0   and   . Therefore, vy=vy(0)-gt and y=y(0)+vy(0)t-

gt2/2. For y(0)=0, vy(0)=4.15 m/s, g=9.81 m/s2, and k=0, we find t=0.846 s. We could calculate the
length of the jump (neglecting air resistance) from this last equation, but this is not necessary to check
the accuracy of the solution. For a step size of 0.01 s, the jump time t becomes 0.85 s and the length
of the jump is 8.03 m. For a step size of 0.005 s, these values are the same. Therefore, the error of the
jump time in our calculation is less then 0.005 s (the value of the step size). The error in the length of
the jump is 0.05 m. This should be acceptable for our purposes.

Next, we solve the equations including air resistance. Now, the jump time is 0.83 s (not much
different), but the length of the jump is only 7.77 m, much less than the actual length of the jump,
which is 8.90 m. The accuracy of our calculation should be about the same with and without air
resistance, since the numerical results are similar in both cases. Under normal conditions, when the
air density is 1.3 kg/m3, the length of the jump is 7.70 m, only 0.07 m less than in thin air.

The value of g changes only about 5 parts in 10000 between sea level and a location one mile
above sea level. Therefore, g is at least 9.805 m/s2 in Mexico City, if it is 9.81 m/s2 at sea level. With
this value of g, the length of the jump is still 7.77 m.

Figure 1: Range of the long jump,
assuming y(0)=0.3 m.

Nothing we have considered so
far can explain the discrepancy
between the actual length of the jump
and its calculated value. Since we have
carefully tested the numerical accuracy
of our method, we can only conclude
that (i) either the starting values are
different or (ii) the physical model (i.e.,
the differential equations) are wrong.
Actually, the solution to our puzzle is
similar: We have treated the athlete as a
point mass. That is not a good

approximation. Actually, a long jumper stretches his/her legs forward at the end of the jump. That
should gain an extra two feet or so. Also, the center of mass is about three feet above the ground at
the beginning of the jump and only about one or two feet above the ground at the end. This will add
an extra two feet or so to the length of the jump (compare your graph). It is difficult to calculate the
exact length of the jump without additional input data, but at least we have a found a possible source
for the discrepancy between calculation and data.
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Solution for Problem 2:

A mass m of water loses heat to its surroundings by radiation (note that we neglect convection and
conduction, the other two heat transport mechanism) according the the Stefan-Boltzmann law

mc
dT
dt

R T T= − −4 2 4
1
4π σ( ) .

This is an ordinary differential equation, but it is nonlinear. I decided to solve it using Euler’s method
in the Excel spreadsheet program. The radius R of the mass of water (not given in the problem) can
be calculated from the water’s density. We find R=6.20 cm. The surface of area of the water mass is
therefore 0.048 m2. Now we have all the input data for solving the equation. I chose a step size of 720
s (12 min), but verified that the results do not depend on the step size. The temperature difference as a
function of time is given in Fig. 2. We can see that it takes about 2 hours and 20 minutes for the
temperature difference to drop by 50%.
If we double the mass, we also have to consider that this will change the radius and the surface area.
For a mass of m=2 kg, the radius is now R=7.82 cm and the surface area A=0.0768 m2. The
spreadsheet calculation shows that it now takes about 3 hours for the temperature difference to
decrease by 50%. This result is not surprising, since doubling the mass only increases the surface area
by 2 to the power of 1.5, which is 1.58. (The area increases sublinearly with mass.) Therefore, the
cooling time increases by 2/1.58 or 26%.
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Figure 2: Temperature difference between the water bath and its surroundings as a function of
time in hours.



Solution for Problem 3:

The ion density is governed by the ordinary nonlinear differential equation (DEQ)
dn
dt

A kn= − 2 . Since the DEQ is nonlinear, it can only be solved numerically. However, this is not

too difficult, since the coefficients A and k are constant. I used an Excel spreadsheet and Euler’s
method. The result is shown by the solid line in Fig. 3.

Figure 3: Ion density as
a function of time.

We first discuss two limiting cases: If k=0 (no recombination), n(t)=At. In this case, the
density increases linearly, see the dotted line in Fig. 3. For very long times, the solution reaches a
steady-state limit, similar to the skydiver problem we looked at before. In the steady-state limit, the
left hand side of the DEQ is zero, therefore n2=A/k. This steady-state limit is shown by the dashed
line in Fig. 3. The numerical solution to the full problem (using a step size h=0.02 s) is given by the
solid line in Fig. 3. The gas reaches one half of its steady-state density after about 0.77 s. This value
is independent of the step size, therefore we can assume that our numerical solution is reasonably
accurate.

Changing the value of A affects the initial slope of the density (given by the dotted line) and
also the steady-state limit. Changing the value of k only affects the steady-state limit. For a constant
A/k ratio, the value of A determines how fast the density reaches its steady-state limit.
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